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Quasiparticle gaps and exciton Coulomb energies of H-passivated spherical Si nanoshells are computed
using first-principles �SCF method and selectively comparing to GW computations. We find that the quasi-
particle gap of a nanoshell depends on both its inner radius R1 �weakly� and outer radius R2 �strongly�. These
dependences on R1 and R2 are mostly consistent with electrostatics of a metallic shell. We also find that the
unscreened Coulomb energy ECoul in Si nanoshells has a somewhat unexpected size dependence at fixed outer
radius R2: ECoul decreases as the nanoshell becomes more confining, contrary to what one would expect from
quantum confinement effects. We show that this is a consequence of an increase in the average electron-hole
distance, giving rise to reduced exciton Coulomb energies in spite of the reduction in the confining nanoshell
volume.
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It is well-known that quantum confinement �QC� and sur-
face effects alter electronic and optical properties of nano-
scale materials compared to their bulk form.1 Increase in the
quasiparticle or optical gaps by several eV’s, reduction in
effective medium screening, and one to two orders of mag-
nitude increase in exciton binding energies are some of the
many examples that confinement and surface effects bring
out in nanostructured forms of matter.2 In addition to these,
geometrical or topological manipulation of nanoscaled mate-
rials can also lead to interesting physical and chemical prop-
erties, as evidenced for the case of carbon in its bucky-ball,
nanotube, and graphene forms. Computational studies per-
formed with state-of-the-art methods can be very useful in
this respect, as they allow both prediction and microscopic
understanding of novel properties in real and hypothetical
material systems.

In this Brief Report, we examine electronic excitations
and exciton Coulomb energies in Si “nanoshells” in order to
understand the effects of finite cavities in confined nano-
structures. The nanoshells we consider are formed from
bulk-truncated spherical Si nanocrystals, which we will call
“parent quantum dots,” by creating concentric spherical cavi-
ties in them, and passivating the dangling Si bonds on the
inner and outer surfaces by hydrogen atoms. Since the dis-
covery of visible photoluminescence from porous Si,3 the
electronic and optical properties of Si quantum dots have
been examined in great detail.4 It is therefore surprising that
these properties have not been investigated for Si nanoshells.
In the present study, our primary goal is to examine how
electronic and optical properties of spherical Si nanostruc-
tures evolve in going from the quantum dot to the nanoshell.
A secondary motivation for this study is the recent interest in
the electronic and optical properties of Si/Ge core-shell
nanoparticles5 and of metallic nanoshells, typically com-
posed of noble-metal and transition metal elements in core-
shell �or mixed-alloy� configurations over dielectric cores.6,7

While bulk Si is obviously not a metal, Si clusters and nano-
crystals have been shown to behave like metallic particles in
response to both static8 and time-varying electric fields.9 Our
results show that �i� Si nanoshells also have very interesting
“metalliclike” electronic and optical properties, and �ii� the

competition between geometrical or topological effects with
QC can lead to peculiar size and shape dependences at the
nanoscale.

Our computations for quasiparticle gaps were performed
in real space using the higher-order finite difference pseudo-
potential method10 using a uniform grid spacing of h
=0.6 a.u. We used zero boundary conditions requiring the
wave functions to vanish outside large spherical domains, the
radii of which were adjusted from 34 to 50 a.u., depending
on the size of the nanoshell. For a nanoshell of composition
SiN−nHm1+m2

, where N is the number of Si atoms in the parent
quantum dot, n is the number of Si atoms taken out to create
the cavity, and m1 and m2 are the numbers of H atoms pas-
sivating the inner and outer surfaces, respectively, we calcu-
lated the inner and outer radii as R1= �3�4n−m1� /4��0�1/3,
R2= �3�4N+m2� /4��0�1/3, respectively, where �0=0.199 87
Å−3 is the valence electron density in bulk Si. These expres-
sions take into account the increase �decrease� of R2 �R1� due
to passivating H atoms at the outer �inner� surfaces.11

The quasiparticle gap, Eqp, was computed from the verti-
cal ionization potential �IP� and electron affinity �EA� within
the �SCF approximation, in which Eqp=IP−EA.12,13 It is
well-known that in the bulk limit, the Eqp computed using
local-density approximation �LDA� values for IP and EA
converges to the bulk LDA band gap, which is underesti-
mated by �0.6 eV. For hydrogenated Si quantum dots the
�SCF quasiparticle gaps are underestimated with respect to
quasiparticle gaps obtained from GW calculations by a simi-
lar amount �0.6 to 0.9 eV�, which is due, almost entirely, to
underestimated IPs, as the calculated EAs were found to be
within 0.1 eV of each other.14 In order to assess the trend of
GW versus �SCF quasiparticle gaps in Si nanoshells, we
performed a GW calculation. Due to the large computational
demand, the GW calculation was performed for the smallest
nanoshell Si156H184 at a grid spacing of h=0.8 a.u. The self-
energy was computed with a vertex correction using the po-
larizability obtained within the time-dependent LDA �the so-
called G0Wf approximation�, which has been shown to
improve IP and EA values.14 We obtained IP and EA by
diagonalizing the GW Hamiltonian in the space of Kohn-
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Sham orbitals within the Tamm-Dancoff approximation �by
ignoring all matrix elements between occupied and unoccu-
pied orbitals�. We used a total of 750 Kohn-Sham orbitals.
Our computed GW and �SCF values for the IP of Si156H184
are 7.10 and 6.65 eV, respectively. The EAs, on the other
hand, within GW and �SCF theories are practically the
same, 2.56 and 2.62 eV, respectively. These suggest that the
IP and EA values computed at the two levels of theory for Si
nanoshells have a similar trend to those observed in Si quan-
tum dots. While keeping this in mind, we note that the Eqp
values reported in the rest of this Brief Report are the �SCF
values without any scissors corrections.

The size dependence of the quasiparticle gaps in Si
nanoshells is shown in Fig. 1, where we plot Eqp as a func-
tion of the nanoshell thickness t=R2−R1. We first focus on
the t dependence of Eqp at fixed R1. We considered three sets
of nanoshells with Si35, Si87, and Si147 cores removed from
the parent quantum dots, corresponding to inner radii of R1
=5.0, 6.9, and 8.4 Å, respectively. The computed Eqp as a
function of t show two trends: first, the gap is inversely pro-
portional to the nanoshell thickness, which is expected due to
QC effects. Fitting the computed gaps for each R1 in this size
range with a power-law t dependence as Eqp�t�−Eqp

bulk=At−�,
we find ��0.9–1.0, with small variations due to different
R1 for the three sets of nanoshells. Second and more inter-
estingly, we find that Eqp does not just depend on the thick-
ness of the nanoshell. For a given thickness, Eqp depends
also on R1, and increases as R1 decreases. For example, at
t�5.5 Å, Eqp increases by more than 0.7 eV in going from
a nanoshell with a Si147 cavity to one with a Si35 cavity.

Next, we focus on the thickness dependence of the quasi-
particle gaps at fixed R2. We considered two sets of
nanoshells with parent quantum dots of 525 and 801 Si at-
oms, corresponding to R2=14.2 and 16.2 Å, respectively. At
each fixed R2, we increased R1 from zero to a maximum
value chosen such that there is at least one shell of Si atoms
fully coordinated with only Si atoms in the nanoshell. The
results, also displayed in Fig. 1, show the inverse correlation
of Eqp with thickness, but with a much weaker dependence

on t compared to the dependence at fixed R1. Fitting the
computed quasiparticle gaps for each fixed R2 in this size
range with a power-law t dependence as Eqp�t�=Eqp

dot�R2 / t��,
where Eqp

dot is the quasiparticle gap for the parent quantum dot
�R1=0�, we find ��0.25. These sets of findings at fixed R1
and R2 suggest that the quasiparticle gaps of spherical quan-
tum nanoshells can be adjusted by different amounts by ap-
propriately varying either the inner and outer radius.

The first-principles results presented so far are different
from predictions based on the simplest form of the effective
mass approximation �EMA� corresponding to infinite barri-
ers at the inner and outer boundaries. The nr= l=0 solution of
the single particle potential V�r�=0 for R1�r�R2 and �
elsewhere, is given by

	�r� =
1

�2�r2�R2 − R1�
sin���R2 − r�

R2 − R1
� . �1�

The resulting eigenvalue spectrum is inversely proportional
to the square of the thickness, which would imply that the
gap for a nanoshell in the infinite potential EMA should scale
as Egap

EMA
 t−2. Our first-principles computations show that
Eqp depends on both R1 and R2 with a stronger dependence
on R2 compared to that on R1. It is, however, important to
note that more sophisticated EMA treatments taking into ac-
count charging energies, anisotropic effective masses, inter-
valley couplings, and finite barriers at the boundaries will
most likely bring EMA predictions into better agreement
with first-principles results.15

The size dependence of quasiparticle gaps can be ex-
plained qualitatively using classical electrostatics by exam-
ining the spatial distribution of the positive and negative
charges added to a nanoshell. In Fig. 2, we display the radi-
ally averaged charge density differences ����r�� between the
negatively �and positively� charged nanoshell and the neutral
nanoshell with a Si801 parent quantum dot �R2=16.2 Å�. The
results show that most of the extra charge is concentrated
within a few Å of R2. For a macroscopic metallic shell of
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FIG. 1. �Color online� The computed �SCF quasiparticle gaps
as a function of the nanoshell thickness at fixed inner radii of R1

=5 Å �+�, 6.9 Å �� �, 8.4 Å �squares�, and at fixed outer radii of
R2=14.2 Å �circles�, and 16.2 Å �triangles�. The solid lines are
power-law fits �see the text�, which are meant to serve as guides to
the eye.
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FIG. 2. �Color online� The computed differences between the
radial charge density distributions of the anionic and neutral
Si784H408 �blue solid line� and of the cationic and neutral Si472H568

�red dashed line� nanoshells, showing the localization of the added
charge in the immediate vicinity of the outer radius R2. Both
nanoshells have the same R2=16.2 Å. The arrows mark the posi-
tions of their inner radii.
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inner and outer radii R1 and R2, respectively, the work done
to charge the shell and bring the charge to �and from� infinity
is proportional to 1 /R2 irrespective of R1, since any extra
charge on a metallic shell resides entirely at the outer radius.
If the Si nanoshells behaved exactly like metallic macro-
scopic objects and all the extra charge were to accumulate at
R2, we would expect IP and EA to scale as 1 /R2 and not
depend on R1. The strong and nearly t−1 dependence of the
quasiparticle gap when R2 is varied at fixed R1 is, therefore,
qualitatively consistent with predictions from classical elec-
trostatics. In addition, the dependence on R1 is found to be
very weak, especially for nanoshells of thickness more than
1 nm, where quantum effects are expected to be less impor-
tant, as shown by the last three data points at fixed R2 in Fig.
1. The small but somewhat appreciable magnitude of ���r�
away from r=R2 is, therefore, also consistent with the weak
R1 dependence of the quasiparticle gaps.

Another quantity of interest that plays an important role in
determining optical gaps Eopt is the exciton Coulomb energy
ECoul. Neglecting the small contribution from the exchange
interaction, the optical gap is given by Eopt=Eqp−ECoul.
First-principles computation of the screened ECoul for con-
fined systems is extremely demanding. It was shown, how-
ever, that screening in Si quantum dots is quite inefficient,
with average dielectric constants being approximately one
order of magnitude smaller than the bulk dielectric constant.2

Therefore, here we focus on the computationally less de-
manding unscreened ECoul to estimate exciton binding ener-
gies in Si nanoshells. Although even the computation of the
unscreened ECoul would require the solution of coupled equa-
tions for the interacting electron-hole pairs, using first-order
perturbation theory, the unscreened ECoul can be expressed
rather accurately in terms of the hole 	h and electron 	e
wave functions as17

ECoul =	 	 
	e�r1�
2
	h�r2�
2


r1 − r2

d3r1d3r2. �2�

Earlier studies12,16,17 in Si quantum dots showed that QC
increases the magnitude of ECoul significantly. It was also
shown, using first-principles12 and semiempirical pseudopo-
tential calculations,17 that the EMA overestimates the mag-
nitude of ECoul. In order to understand the size dependence of
ECoul in Si nanoshells, we first analytically calculated the
unscreened ECoul within the EMA using the envelope wave
functions 	�r� in Eq. �1� for both the electron and the hole.
The resulting expression �in a.u.� is given by

ECoul
EMA�R1,R2� =

2

��R2 − R1�	0

�

dx
sin2 x�2x − sin 2x�

x +
�R1

R2 − R1

.

�3�

In the limit R1→0, the definite integral can be expressed in
terms of sine integral functions and gives the familiar result
ECoul

EMA�R1→0�=1.786 /R2. The above expression for ECoul
shows that even at the EMA level, the exciton Coulomb en-
ergy in spherical nanoshells depends on both R1 and R2. In
addition to EMA, we computed ECoul using first-principles

wave functions for the electron and the hole. As in the qua-
siparticle computations, we first computed ECoul as a function
of nanoshell thickness at fixed R1, which are plotted in Fig.
3�a�. We observe that EMA overestimates ECoul compared to
first-principles results, which is similar to the trend observed
in Si quantum dots. The main reason for this behavior is that
an oversimplified infinite potential in the EMA approach
constrains the electron and hole wave functions to vanish
abruptly at R1 and R2 rather than allow them to decay
smoothly into the vacuum.12,15,17 We also observe that both
the EMA and ab initio results predict an inverse correlation
of ECoul with the nanoshell thickness, as expected from a QC
model.

The thickness dependence of ECoul for nanoshells with a
fixed R2, on the other hand, is quite unexpected, and is
shown in Fig. 3�b�. While EMA still overestimates ECoul with
respect to ab initio results, at both levels of theory ECoul is
directly proportional to the nanoshell thickness. In other
words, ECoul decreases as the nanoshell becomes more con-
fining, which is not in accord with expectations from a QC
model. This finding, which is peculiar at first sight, can be
explained using an argument based on a competition between
quantum confinement and geometrical �or topological� ef-
fects, as follows: in going from a quantum dot �with no cav-
ity� to a nanoshell of the same outer radius, two main
changes occur that affect ECoul. First, the electron and the
hole wave function amplitudes increase, since 	e and 	h are
confined to smaller volumes. Second, due to the cavity in the
interior portion of the nanoshell, the “average distance” be-
tween the electron and the hole increases compared to that in
the dot. While the effect of the confinement is to increase
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FIG. 3. �Color online� The unscreened exciton Coulomb ener-
gies computed from first-principles wave functions directly from
Eq. �2� �discrete data points shown by solid or hollow circles and
squares� and using the EMA expression in Eq. �3� �continuous,
dotted, or dashed lines� as a function of the nanoshell thickness for
�a� fixed R1 and �b� fixed R2.
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ECoul, the effect of the relative increase in the electron-hole
separation is to lower it. Our computations show that for a
spherical nanoshell, the “distance effect” is more dominant,
resulting in a decrease in ECoul in spite of the increased con-
finement. One way of seeing this more explicitly is to as-
sume constant wave functions 	e�r�=	h�r�=V−1/2 �where V
is the volume of the nanoshell�. Though somewhat unrealis-
tic due to discontinuities at the boundaries, the simple form
of the wave functions allows direct calculation of the integral
in Eq. �2�, which results in ECoul=3�2R2

5−5R1
3R2

2+3R1
5� /

5�R2
3−R1

3�2. One can now show that ECoul obtained with R1
=0 is always larger than ECoul�R1 ,R2� for any nonzero value
of R1, given that R2�R1.

Our unexpected finding of smaller exciton Coulomb ener-
gies in spherical nanoshells raises an interesting question re-
garding the role that geometry or topology plays in various
properties of nanostructures. In particular, a spherical
nanoshell is neither convex, which is a geometrical property,
nor simply connected, which is a topological property. An
intriguing question is which of these actually plays a more
important role in dominating over QC effects. For example,
in an attempt to figure out the possible roles played by ge-
ometry and topology and their competition with QC, it
would be interesting to consider the case of a solid nano-
structure in the shape of a star, which is simply connected,
yet nonconvex.

In summary, we calculated the quasiparticle gaps Eqp and
exciton Coulomb energies ECoul of spherical Si nanoshells
passivated by H at the inner and outer surfaces using first-
principles �SCF method and selectively comparing to GW

computations. We found that the quasiparticle gaps depend
on both R1 �weakly� and R2 �strongly�, which might be im-
portant in tailoring the optical properties of nanostructures
with cavities in them. These findings differ from predictions
based on the simplest version of the EMA with infinite po-
tentials at the boundaries, in which Eqp depends only on the
thickness of the nanoshell. These dependences of Eqp on R1
and R2 can be qualitatively explained using classical electro-
statics of a metallic shell. We also found somewhat unex-
pectedly that the exciton Coulomb energy in Si nanoshells of
fixed outer radius decreases as the nanoshell becomes more
confining via the creation of spherical cavities, contrary to
what one would expect from QC effects. We argued that this
is due to the increase in the average distance between the
electron and the hole, which gives rise to reduced ECoul in
spite of the reduction in the confining nanoshell volume. This
finding highlights the potentially useful roles geometry
and/or topology could play �in competition with QC effects�
in bringing out novel properties of nanostructures.
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